
Toward Composable Hardware Agnostic
Communications Blocks - Lessons Learned
Bow-Nan Cheng

MIT Lincoln Laboratory
bcheng@ll.mit.edu

Shari Mann
L3 Communications

shari.l.mann@L-3com.com

Tim Arganbright
Rockwell Collins

timothy.arganbright@rockwellcollins.com

Abstract—In recent years, there has been a large push in
the U.S. Department of Defense (DoD) to more rapidly respond
and adapt to changing technology advancements and emerging
threats. Nowhere is an accelerated pace of innovation more
needed than in the airborne tactical domain where the pre-
dominant communication system, Link 16, has been in use for
over 40 years. Airborne tactical systems are often stove-piped,
highly integrated, and designed to be hardware-specific, making
insertion of new technology at the component level extremely
challenging. To resolve these limitations, DARPA has been ex-
ploring an architecture which separates the transceiver from
the waveform processors from the application processors [1].
Each of these processors can be programmed with composable
waveform blocks that can be chained together dynamically to
leverage the available apertures to perform different missions
from communications, SIGINT, electronic warfare, and others.
As part of the effort, many of the current generation of airborne
tactical waveforms were ported to the new architecture. In this
paper, we describe some lessons learned in developing hardware-
agnostic, composable, software communications blocks as a proof
of concept of the modular new architecture.

I. INTRODUCTION

In recent years, the commercial world has developed highly
capable general purpose processors that enable increasing
functionality to be implemented very rapidly in software.
Many capabilities that used to require hardware implemen-
tation can now be developed in software. By enabling more
functionality in software, system designs are more easily
modifiable and extensible. This paradigm change has been
particularly seen in the cellular industry where smart phones
have transformed devices initially intended to make and re-
ceive phone calls, into a general compute platform, capable of
acting as global position system (GPS) devices, sensors, and
video cameras. In the cellular world, the combination of the
general purpose processor technology and rich development
environments fueled an explosion of user-built applications
tailored to consumer needs, enabling individuals to creatively
leverage components on smart phones for use in applications.

In contrast, many communication systems in the U.S. De-
partment of Defense (DoD), and in particular, airborne tactical
communication systems like Link 16 [2], were developed as
stove-piped, highly integrated systems that provide a single,
clearly defined capability [3]. In fact, the design of many
airborne communication systems is tightly integrated with the
on-board aircraft applications, functions, and hardware, mak-
ing technology insertion difficult. Modifications to the radio

system require whole-scale hardware-specific changes from
the application layer down to the physical layer. This tight
integration of the application, networking, medium access, and
physical layers of the waveform has limited our ability to
take advantage of technology advances in signal processing,
rate adaptation, channel access, and networking to evolve our
airborne communications capability.

Even with newer software-defined radio (SDR) technology,
this problem persists. SDR moves traditionally hardware-
centric components to software-based implementations that
are reconfigurable. Although SDR technology has helped to
ease the upgrade path of DoD radio systems, it still tightly
couples systems and functions - the antennas, power ampli-
fiers, transceivers, modem hardware, and networking software
are all tied to a single waveform. Even though the platform
is “software reconfigurable”, implementations are tied to the
specific hardware and independent evolution of the waveform
in a modular fashion is not yet practical. As shown in Figure 1,
the SDR architecture slices the system horizontally, limiting
cross-waveform, cross-transceiver, cross-antenna sharing.

Presentation Name - 2
Author Initials MM/DD/YY

DARPA New Architecture

Application
Processor(s)

Waveform
Processor(s)

Software Defined Radio Architecture

SD
R

GPP FPGA DSP XCVR PA

SD
R

GPP FPGA/DSP XCVR PA

SD
R

GPP FPGA/DSP XCVR PA

GPP FPGA/DSP XCVR PA

GPP FPGA/DSP XCVR PA

GPP FPGA/DSP XCVR PA

Encoding
(Turbo/Conv)

MSK
Mod

Packet
Injector CRC Inter-

leaver
Slot

Builder
PN

Cover

Composable Waveform Blocks

Fig. 1: Software Defined Radio (SDR) vs. New Architecture

Presentation Name - 3
Author Initials MM/DD/YY

Decoding
(Turbo/Conv)

MSK
Demod

De-Inter-
leaver

PN De-
cover

Radio System 1

Decoding
(Turbo/Conv)

MSK
Demod

De-Inter-
leaver

PN De-
cover

Radio System 2

Classifier MSK
Demod Block 4 Block 2

SIGINT System

Decoding
(LDPC)

OPSK
Demod

De-Inter-
leaver

Radio System 1

Decoding
(Turbo/Conv)

MSK
Demod

De-Inter-
leaver

PN De-
cover

Radio System 2

Classifier Block 4 Block 2

SIGINT System

Shared blocks

Today Vision

Fig. 2: Dynamically composable waveform blocks enable
novel applications

To resolve these limitations, DARPA has been exploring

an architecture which separates radio functionality into three
technology components: transceiver elements, waveform pro-
cessing functions, and application processing functions as
shown in Figure 1 [1]. Transceiver functions are functions
associated with transmitting and receiving the signal (including
A/D and D/A conversion) from the platform antennas. Wave-
form processing functions are generally real-time functions
associated with generating and receiving the signal in space.
The applications processing function includes non-real-time
functionality such as networking and applications. As shown
in Figure 2, the goal is that each of the processing functions
can be programmed with composable waveform blocks that
can be grouped together dynamically to leverage the available
apertures to perform different missions from communications,
SIGINT, electronic warfare, and others. To understand the fea-
sibility of this architecture several current generation airborne
tactical waveforms were ported to the new architecture.

In this paper, we present lessons learned in develop-
ing hardware-agnostic, composable, software communications
blocks as proof of concept of the new modular architecture.
Although the architecture supports composable processing
blocks that can be FPGA, ASIC, or software components, the
focus of this work is on the software components. The rest
of the paper is organized as follows: Section II presents an
overview of AMPLib, the hardware agnostic shim developed
to enable the architecture while Section III overviews the
use case and implementation. Section IV discusses several
key lessons learned and implications of the approach. Finally,
Section V concludes the paper with future work.

II. AMPLIB OVERVIEW

One of the key challenges of evolving airborne tactical
communications systems is that many of the implementations
are tightly coupled to the hardware and leverage hardware-
specific elements of processors or resource. While optimizing
for hardware enables developers to get the most performance
out of the systems, processor advancement often outpaces the
time it takes to fund and port software to new processors.
There has been significant work in the recent decades in
abstracting hardware specifics from applications developers
using stack virtual machines [4], process virtual machines [5],
and Software Communication Architecture (SCA) [6] . How-
ever, almost all the work has focused on abstracting hardware
functions on a homogeneous set of processors (i.e. multi-
core x86, etc.). There has been recent work in examining
virtualizing a grouping of heterogeneous processors [7]. These
techniques tend to focus on graphics processor unit (GPU)
usage which which has seen limited usage to date on com-
munications systems. To enable heterogeneous processing on
GPPs and DSPs, a hardware agnostic shim called Asymmetric
Multiprocessing Library (AMPLib) was developed.

AMPLib is a shared library abstraction layer that hides un-
derlying processor and operating system details and provides
a common interface for scheduling, memory management, and
inter-process communications (IPC). It has been ported to
support Linux and Windows on x86, TI C66 DSPs, PowerPC,

Freescale/NXP StarCore SC3900FP DSPs, and ARM proces-
sors. Waveform processing blocks are “wrapped” with AM-
PLib, which handles the processor/operating system specifics.
AMPLib provides several beneficial features including:

• An architecture-agnostic IPC mechanism that hides un-
derlying IPC details from waveform implementers

• Hardware agnostic processing through a common thread-
ing, scheduling, IPC, and memory management approach

• Hardware-specific optimization abstraction
• Flow-based block composition - Each block may receive

multiple inputs and generate multiple outputs to different
blocks enabling flow-based usage

Presentation Name - 5
Author Initials MM/DD/YY

Ensemble 3 Ensemble 2 Ensemble 1

Hardware Agnostic WF Development

SW
Block 1

SW
Block 2

AMPTask 1

Bl 1

SW
Block 3

SW
Block 6

SW
Block 4

SW
Block 5

SW
Block 7

SW
Block 8

SW
Block 9

Bl 3

Bl 2

AMPTask 2

Bl 1

Bl 5

Bl 4

AMPTask 3

Bl 6

Bl 8

IPC IPC

Inter-Process Communication (IPC)

Task 1 Task 2 Task 3 Task 4 Task 5

ARM DSP 1 DSP 2

Software Blocks Grouped into Tasks

Tasks Grouped into Ensembles that are deployed on individual processors

IPC IPC

W
av

ef
or

m
D

ev
el

op
er

s
A

ut
o-

G
en

er
at

ed

Fig. 3: Waveform processing blocks are grouped into AMP-
Tasks and Ensembles for deployment to hardware

Figure 3 illustrates the general approach with wrapping
waveform processing blocks with AMPLib. Waveform devel-
opers implement processing blocks with generic processing
elements such as FIR Filters, modulators, etc. These generic
processing blocks are grouped according to function into
AMPTasks which constitute a single thread of operation.
AMPTasks are then grouped into Ensembles either manually
or through an automated process that understands the hardware
and block constraints, which are deployed to a specific proces-
sor. Details of the AMPLib implementation and architecture
are left to other work.

III. USE CASE

Presentation Name - 4
Author Initials MM/DD/YY

5U uTCA Lab-grade Chassis
SRIO backplane

Waveform Card
TI Keystone II EVM

Custom XCVR Card
(Xilinx Zynq 7030 SOC + 2x ADI 9361)

Fig. 4: Test hardware included a TI Keystone SOC, Xilinx
Zynq SOC, and other processors

To evaluate the proposed architecture and the software-
heavy approach, several DoD tactical waveforms were ported
to the architecture and processing blocks wrapped in AMPLib.
Processing blocks were written in a generic manner to enable
sharing and each waveform was implemented such that alteast
50% of the blocks were shared by others. The implementation
was evaluated on generic x86 systems, ARM processors, and
TI C66 DSPs without any modifications to the waveform code.
Figure 4 depicts the hardware leveraged for the effort. All
the waveform PHY-layer processing was performed on the TI
Keystone II system on a chip (SoC) [8]. The TI SoC comprises
a quad core ARM A15 1.4 Ghz processor and 8 C66x DSPs
at 1.2 Ghz. Combined, the SoC provides approximately 173.2
GOPS of processing power. After PHY-layer processing, I/Q
streams were sent via a Serial Rapid IO (SRIO) [9] backplane
to a custom transceiver card that comprised a Xilinx Zynq
SoC [10] and two Analog Devices AD9361 RFIC [11].

Although the full PHY-layer portions of airborne tactical
waveforms were implemented in software wrapped in AMPLib
and run on the TI systems, the performance was significantly
lower than an equal implementation in FPGAs. Performance
of various systems varied from 10 - 80 kbps which fall
significantly short of rates needed for each of the systems.
Future work includes offloading some of the composable
waveform blocks to accelerators either in FPGA or ASICs.

As waveforms were ported from VHDL to software, some
waveform developers noticed a design time savings of 25%
to 50%. When this occurred, designers attributed the savings
to faster simulation times and better and faster debug tools.
Developing the waveform algorithm on a fast x86 processor
and using debug tools such as Microsoft Visual Studio and
Eclipse allowed quick design iterations and debug before run-
ning the same algorithm on the hardware, supporting the new
architecture goals of enabling rapid insertion of technology
into airborne tactical waveforms.

IV. LESSONS LEARNED

While porting and implementing various airborne tactical
waveforms to the new architecture, there were several lessons
learned. In the following subsections, we discuss several
lessons learned and provide recommendations for future in-
stantiations of the architecture.

A. Software vs. Hardware Instantiations

In any waveform design, there is a tradeoff in implementing
components in software vs. hardware. Hardware typically
provides very tight timing guarantees at the cost of limited
flexibility. Typical waveform mapping of which processing
blocks are mapped to software vs. hardware begins with a
high level block complexity analysis. Assumptions such as
infinite memory/all access in L1 cache, hand assembly (no
function call overhead/stack etc.), RISC architecture, etc. are
all used to calculate the number of operations per second for
each processing block. The ones that either require low latency
or have very high ops/sec requirements, are typically mapped

to hardware and the ones that require significant configuration
or customization are mapped to software.

Presentation Name - 10
Author Initials MM/DD/YY

Software vs. Hardware Implementation
Design Trade

Turbo
Block + Turbo + Viterbi

Processing Time:

HW Surface Area:

Processing Time Flexibility
Software Implementation

Viterbi
Block

Fixed surface area, increased
processing time w/ additional blocks

Hardware/FPGA Implementation

Turbo
Block +

Processing Time:

HW Surface Area:

Viterbi
Block

Fixed processing time, increased
surface area w/ additional blocks

Config
1

Config
1000 …

Processing Time:

HW Surface Area:

Config
1

Config
1000 …

Processing Time:

HW Surface Area: 1000x

Software Implementation

Hardware/FPGA Implementation

All software blocks available, no
additional processing or HW surface

area if only operating 1 config at a time

Each HW block requires HW surface area
even if not operating

Turbo

Turbo + Viterbi

Turbo

Fig. 5: Hardware vs. Software implementation tradeoffs

Figure 5 illustrates the tradeoff between implementing
blocks in hardware vs. software. In terms of processing time,
software implementations are often affected by shared load and
are difficult to bound deterministically. In hardware, however,
processing time is fixed. When comparing flexibility, software
blocks are infinitely configurable and several pieces of code
can be dynamically loaded to perform different functions. In
contrast, there is limited configuration in hardware blocks and
significantly different instantiations require additional surface
area on the FPGA or ASIC to accommodate.

The goal of the new architecture is to reduce the time to
insert new technology into the airborne domain. To achieve
this, the flexibility and portability of software implementations
push a software-heavy design with the expectation that general
purpose processors will eventually advance to a state that will
enable software-heavy designs to run at speed. One important
recommendation is to limit the transition between software and
hardware as data flows back and fourth between the two may
result in significant I/O requirements and increased latency.

B. Hardware Agnostic vs. Optimized Considerations

Presentation Name - 12
Author Initials MM/DD/YY

Agnostic vs. Optimized Considerations

Hard IP Application Specific Decoder in ASIC

Hard IP Parameterizable Decoder in ASIC or DSP

VHDL Application Specific Decoder in FPGA

Generic VHDL Parameterizable Decoder in FPGA

C++ Application Specific Decoder

Generic C++ Parameterizable Decoder

Pe
rf

or
m

an
ce

Portability &
 Shareability

Fig. 6: Agnostic vs. Optimized Considerations

To ensure maximum shareability between each of the
waveforms being implemented, each developer created highly
parameterizeable waveform blocks using generic C++. These
blocks were easily shared among the different waveforms and
easily ported to different hardware platforms. However, the
data rate performance fell significantly short of the desired

rates. This highlighted the portability, shareability, and perfor-
mance tradeoff designers must make.

First, parameterizeable code is slower than application
specific code. For example, an application specific decoder
might be able to take advantage of symmetries in a trellis to
improve performance. But, a generic decoder must cover all
configurations and cannot take advantage of those symmetries.

Second, high level languages like C++ lend themselves to
portability and shareability, but with a performance penalty.
We were initially surprised that our implemented waveform
code was running slower on the DSP processor than the
general purpose processor. But, it became apparent that to
gain performance, one must use the DSP vendor’s libraries
and coding styles. This would have resulted in an undesirable
step away from a hardware agnostic system.

Going forward, to gain performance, the waveforms must
leverage accelerators in many forms such as configurable
hard IP in an ASIC, configurable IP in an FPGA, DSP
hard IP accelerators, or custom application specific code. The
performance versus portability and shareability of each option
is shown in Figure 6. Again, the interfaces to these accel-
erators becomes the innovative and time-consuming part of
the development. To remain hardware agnostic, the interfaces
must be abstracted from the waveform designers and creating a
common interface from the waveform to hardware accelerators
and software implementations would allow ease of leveraging
underlying components.

C. Hardware Abstraction Time and Interfaces

While the waveform design time was improved, creating a
hardware agnostic eco-system took a lot of time and effort.
AMPLib and the Board Support Package (BSP) must under-
stand each new platform. While porting AMPLib to various
general purpose processors has proven straightforward, much
effort is required with each new platform in studying all new
interfaces and creating a high performance method to use
those interfaces while hiding that from the application and
waveform developers. Examples of interfaces that were studied
and abstracted are:

• Interfaces between software waveform components
• Interfaces between an SOC GPPs and DSP processor
• Interfaces between GPPs and FPGAs
• Interfaces between GPPs and semi-configurable ASICs
• Interfaces between processors on different cards
• Interfaces to different A/Ds and DACs
The lesson here is that there is still a large development

component whenever new hardware is introduced. However,
that development component resides with the hardware de-
signers and the AMPLib providers. Porting the application
software and waveform software is ideally unaffected.

D. Interprocess Communications and Memory Management

Within an asymmetric multiprocessing (AMP) system, the
Inter-Process Communication (IPC) mechanism is a primary
component. The system must factor in the overall computa-
tional costs of serializing and deserializing data across a wide

Presentation Name - 9
Author Initials MM/DD/YY

ARM
DSP0 DSP1 DSP2 DSP3

Shared L2 Cache – 6 MB

DRAM – 1024 MB

1MB 1MB 1MB 1MB

DSP4 DSP5 DSP6 DSP7
1MB 1MB 1MB 1MB

Serialized Transport

Copy

D
e-serialize

Se
ria

liz
e

Shared Memory
(DRAM)

Shared Memory
(L2 Cache)

ARM
DSP0 DSP1 DSP2 DSP3

Shared L2 Cache – 6 MB

DRAM – 1024 MB

1MB 1MB 1MB 1MB

DSP4 DSP5 DSP6 DSP7
1MB 1MB 1MB 1MB

Pointer to DRAM
Memory Location

ARM
DSP0 DSP1 DSP2 DSP3

Shared L2 Cache – 6 MB

DRAM – 1024 MB

1MB 1MB 1MB 1MB

DSP4 DSP5 DSP6 DSP7
1MB 1MB 1MB 1MB

Pointer to L2 Cache Mem Loc

Portability

Large message support

Performance X

~Portability

Large message support

Performance ~

Portability

Large message support

Performance

~ "

"

"

X

~

Good for IPC between heterogeneous
processing elements

Good for IPC between homogeneous
processing elements

Fig. 7: Memory management

range of bus architectures. Alternatives to serialization of data
must be considered for various deployments of components.
It is imperative that the architecture be able to leverage shared
memory IPC when available, and only ’fall-back’ to serial-
ized/deserialized IPC when necessary. Further, architectures
that allow leveraging of shared memory in L2 cache, or
even L1 cache, can tremendously impact system performance.
Figure 7 shows the various transport mechanisms available
on the TI system. The tables below the figure show the high
level analysis of portability, large message size support, and
performance for each method.

Asymmetric multiprocessing systems offer the ability to
spread computational work across available cores. One exam-
ple of this is the parallelization of an algorithm by distributing
various pieces to idle cores. An inefficient IPC can defeat the
benefits of performing parallel operations across asymmetric
cores. If the total cost of communicating with the other cores,
including serializing, deserializing and bus transfer times,
exceeds the savings in performing parallel computations then
the asymmetric multi-core deployment is not valuable.

Further enhancements to an IPC can be made by implement-
ing reference counted shared memory. Waveforms that require
the same data to be sent to multiple algorithms for processing
in parallel can leverage the existence of a fan-out reference
counted data transport. Rules need to be incorporated, such as
copy-on-write, for cases when the receiver of the data needs
to modify it. Applications need to evaluate the use of IPC
between two homogeneous cores versus simply using the cores
in symmetric multiprocessing (SMP) mode. Ideally, it would
be built into the framework such that switching back and forth
between the two modes of operation is a trivial task. It is
extremely beneficial for this decision, and all the internals of
the IPC, to be hidden from waveform processing blocks.

Presentation Name - 13
Author Initials MM/DD/YY

Algorithm
Master

Algorithm
Slave 1

Algorithm
Slave 2

Algorithm
Master

Algorithm
Slave 1

Algorithm
Slave 2

Serialize /
Deserialize

Shared
Memory

A) Shared Memory Available B) No Shared Memory Available

Algorithm decomposed to 2
processing blocks (Slaves)

A)  Decomposition satisfactory for
shared memory IPC case

B)  Decomposition not granular enough
for non-shared memory IPC case
(requires more slave blocks)

Fig. 8: IPC with and without shared memory

Finally, waveforms must be architected with consideration

given to the rates at which IPC will work on the target SoC
(and future targets). Careful consideration has to be made
before assuming there will be enough L2 cache, for example,
to always have fast shared memory IPC available. The impact
of this includes how granular the pieces of an algorithm need
to be. If certain capabilities are assumed to be available, then
an algorithm may not be decomposed to a small enough set
of pieces to work on all AMP systems. Figure 8 illustrates the
concept by showing an algorithm that was decomposed to two
processing blocks that can be performed in parallel on separate
cores. Part A shows a target with shared memory IPC between
the cores. In scenario A, the algorithm runs fast enough that
the two slave blocks are sufficient. Part B, however, shows a
target that does not contain shared memory between all cores
and thus must utilize a serialization method to transfer data to
the slave cores. In scenario B, the algorithm does not run at
the required speed, and since further algorithm decomposition
is not possible, the approach cannot meet timing constraints.

E. Standardized Block Interfaces

Presentation Name - 6
Author Initials MM/DD/YY

SW
Block

SW
Block

Block Configurations

Msg Data

Per-message
Metadata

SW
Block

PacketData
Samples
Symbols

Data Path

Fig. 9: Standard interfaces must support data and control on
a per message level

Although an efficient and generic IPC and physical inter-
faces lay the groundwork for efficient splitting of processing
blocks to different heterogeneous processors, block-to-block
message formats and configurations must be well defined and
standardized. In particular, developing generic blocks that can
be used by multiple waveforms require clear separation of
waveform specific metadata and waveform-agnostic configu-
rations. Figure 9 highlights some of the major inputs needed
for software processing blocks. For the data path, three types
of messages were defined that handled almost all the types of
data flowing between blocks:

• Packed Data which handles data from higher layers of
the network stack and can be represented in bits/bytes

• Symbols which handles data traversing from en-
coder/decoders to modulator/demodulators

• Samples which describes I/Q values to be sent to the
digital up/down converter and DAC/ADC

In addition to the data path, each block needs to be
configured 1) externally through a control interface for setup,
and 2) message-by-message. Static configuration and external
block control and configuration is fairly straight forward and
can potentially be a block-specific specification. It is recom-
mended that blocks of the same type (i.e. encoders/decoders,
modulator/demodulators, etc.) follow a similar specification.
Waveform-specific configurations should be pushed to generic
processing blocks through a waveform-specific block.

Block configuration on a per-message basis, also known as
metadata, can be a bit more challenging. Metadata that travels

with each message can either be waveform specific or block
specific. This metadata needs to travel with each message
to ensure time alignment. The alternative is to have separate
paths for metadata and message data which requires complex
systems to ensure time alignment.

Presentation Name - 11
Author Initials MM/DD/YY

WF Specific
Ctrl Block
WF Metadata

Data

Generic
Processing

Block 1
Data

Block
Config

Data

Generic
Processing

Block 1
Data

Config

WF
Specific
Metadata

Block
WF Metadata

Block Metadata

Data

Generic
Processing

Block 1

Configured
Generic

Processing
Block

WF Metadata

Block Metadata

Data Data

Pass-through

Generic
Processing

Block 2

Data

Pass-through

Master Controller Approach Metadata Pass-through Approach

•  Configured generic processing block requires WF
specific block preceding to set block metadata.

•  Generic processing blocks pass WF metadata
through

Fig. 10: Master controller vs. pass-through approaches

There are many ways to handle development of generic
non-waveform specific processing blocks that can be lever-
aged for multiple waveforms. Figure 10 shows two potential
approaches: a master controller approach and a pass-through
approach. In the master controller approach, a waveform-
specific block that handles the waveform-specific metadata and
dispatches data and block-specific configurations to generic
processing blocks. Once the processing blocks finish, the data
is either pushed along to the next processing block while the
output or metadata returns to the master controller block, or all
of the data and metadata is pushed back to the master block to
redirect to another generic processing block. The benefit to this
approach is that there is clear separation of generic processing
blocks and waveform specific information. However, should
the master waveform block need to be split amongst different
processors, additional complexity is added to synchronize and
coordinate the master blocks.

In the pass-through approach, waveform-specific metadata
is embedded in each message and travel along with the mes-
sage. Waveform-specific blocks process the waveform-specific
metadata and set block-specific metadata to be processed by
proceeding configurable generic processing blocks. Processing
blocks (generic or configurable generic blocks) ignore the
waveform metadata and simply allows it to pass through the
block. The benefit of this approach is that all metadata travels
with the message and requires little to no synchronization.
The tradeoff is that metadata is copied from block to block
and although data can move from generic processing block to
generic processing block if no metadata is needed, waveform-
specific processing blocks are required prior to generic blocks
to set appropriate block metadata for the next block. Additional
considerations are needed for software blocks to interact
in a generic manner with hardware blocks. Future work is
addressing these issues.

As part of the effort, it was determined early on to leverage
Google Protocol Buffers [12] to define messages to pass
between blocks with the goal of ease of message definition and
architecture independent operation. While Protocol Buffers
provided flexibility for messages traversing from high layers

of the network stack, its utility became hampered and limited
when dealing with samples. One example is that the smallest
possible encoding for an integer is int32. Defining I/Q
samples in 32 bit values significantly increases the message
size unnecessarily. Future implementations should consider
leveraging appropriate standards such as VITA-49 [13] and
others as available for passing messages.

F. Flow Control

One of the key issues to address in any kind of waveform
design is flow control in the system. Data packets may arrive
asynchronously from higher layers of the network stack and
at some point, will be required to map to synchronous sample
rates expected by the DAC. This is especially important in
software-based designs because estimating each block’s pro-
cessing time can be difficult to estimate deterministically and
varies with processor load, parameter complexity, etc. Inter-
block queues are needed to pass messages between blocks
and due to the different block processing times, these queue
lengths can vary greatly.

Presentation Name - 7
Author Initials MM/DD/YY

Software
Block A

Software
Block B

Processing Delay A

Input queue lengths at each block can vary
greatly due to non-deterministic block

processing times

Works well with linear chain of blocks, but increase in
complexity for complex flows (one-to-many, many-to-one)

No visibility into lost messages ! requires
retransmission from beginning

Processing Delay B
Inter-block

queues

Pushback

Per-Block Pushback Flow Control Mechanism

Rate Limit
Block

Flow Ctrl
Block

Multi-Block Flow Control Mechanism
Pushback

Rate Limit
Block

Flow Ctrl
Block

Fig. 11: Flow control to support multiple fan-in/fan-out im-
plementations require a scalable approach

Figure 11 illustrates some options to implement flow control
in software-based waveform designs. One approach is to
characterize the performance of each block under several con-
ditions to bound the processing delay. Queuing theory can then
be leveraged to determine the inter-block queue size required
between each block to guarantee no message drops due to
queue overflow in the system. The benefit is that this simplifies
processing at each block and leaves queue configuration to a
system-level designer. The tradeoff is that processing delays
can be difficult to bound in software-based implementations
and if underlying IPC is not stable, the approach can fall apart.

Another method to resolve this issue is to have a push-back
mechanism either on a block-by-block level or on a multi-
block level. In the block-by-block pushback approach, queues
between each block are small and blocks processing data stop
a previous block from sending new data until it is done. While
the approach is simple for a single chain of blocks, the goal
of the new architecture is to allow any number of inputs and
outputs to/from each block. This enables any other block to
“tap-off” streams of data and perform additional processing.
Significant complexity would be needed in the push-back
mechanism to accommodate this approach. In multi-block

push-back, specific blocks are developed to rate limit process-
ing blocks earlier in the system. While this approach enables
flow control without the complexity of managing block-by-
block pushback, it is difficult to pinpoint data loss anywhere
in between the flow control and rate limit blocks. Additional
considerations may be needed to accommodate multiple inputs
and outputs to intermediate blocks.

G. Fixed vs. Floating Point

Typical waveform designs begin with algorithms imple-
mented in floating point for simplicity, which are then con-
verted to fixed point for performance. Floating point imple-
mentations of waveform processing blocks are typically easier
to standardize, implement, an result in no loss of dynamic
range. This enables rapid development and evaluation of new
algorithms. The performance, however, is typically slower than
fixed-point implementations. Additionally, since hardware is
typically fixed point, conversion may be needed. Fixed-point
implementations, however, yield higher performance, but are
harder to implement and harder to standardize. Interfaces can
be 16, 32, 64, etc bit fixed point, and converting from one to
another can result in loss of dynamic range.

The problem is exacerbated by the fact that multiple con-
versions between fixed and floating point induces errors and
can cause increased latency in the system. Developing generic
processing blocks requires standardization of fixed/floating
point expected input/outputs to ensure enough dynamic range
is available. Furthermore, identifying boundaries for fixed and
floating point conversion is essential to minimize errors and
create bottlenecks for performance.

V. CONCLUSION

In recent years, there’s been a large push in the DoD to
adapt and respond to threats in shorter timescales, particularly
in the airborne tactical domain. To mitigate this issue DARPA
is examining architectures that enable insertion and update
of waveform technology at the processing block-level. The
vision is for these waveform processing blocks to be com-
posed together dynamically to form various communications,
SIGINT, EW, etc waveforms. The processing blocks can be
either software blocks or FPGA/ASIC blocks and as part
of the effort, several DoD airborne tactical waveforms were
ported to the new architecture. In this work, we focus on
the software-based processing blocks and describe lessons
learned in implementing DoD airborne tactical waveforms
in the architecture. Future work includes adding FPGA and
ASIC accelerators into the processing chain and deployment
on different hardware platforms.

VI. ACKNOWLEDGEMENT

This work is sponsored by DARPA under Air Force Contract
FA8721-05-C-0002. The views, opinions, and/or findings ex-
pressed are those of the author(s) and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government. The authors would also
like to acknowledge the following people: Richard Ertel, Ryan

Hinton, Andy Morrical, Alan Stone, Robert Klinkhammer,
Russ Hamilton, Jason Hillger, and Aradhana Narula-Tam.

REFERENCES

[1] DARPA Strategic Techology Office (STO), “Communications in Con-
tested Environments (C2E),” DARPA Broad Agency Announcement
(BAA), no. DARPA-BAA-14-02, December 2013.

[2] DoD MIDS Program Office, “System Specification (SS) for Link 16
Waveform for the Multifunctional Information Distribution System
Joint Tactical Radio System (MIDS JTRS),” DoD MIDS International
Program Office, Tech. Rep. SS-J-10002 Rev B, April 2007.

[3] B.-N. Cheng, F. J. Block, B. R. Hamilton, D. Ripplinger, C. Tim-
merman, L. Veytser, and A. Narula-Tam, “Design Considerations for
Next-Generation Airborne Tactical Networks,” IEEE Communications
Magazine, May 2014.

[4] “Java Virtual Machine Wiki.” [Online]. Available:
https://en.wikipedia.org/wiki/Java virtual machine

[5] “Android ART and Dalvik.” [Online]. Available:
https://source.android.com/devices/tech/dalvik/

[6] JTNC. (2015) JTNC Standards. [Online]. Available:
http://www.public.navy.mil/jtnc/sca/Pages/default.aspx

[7] AMD. Heterogeneous Computing. [Online]. Available:
https://developer.amd.com/resources/heterogeneous-computing

[8] TI. C6000 Multicore DSP + ARM SoC. [Online]. Available:
http://www.ti.com/lsds/ti/processors/dsp/c6000 dsp-arm/overview.page

[9] “RapidIO Specifications.” [Online]. Available:
http://www.rapidio.org/rapidio-specifications

[10] Xilinx, “Zynq-7000 All Programmable SoC.” [Online]. Available:
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

[11] Analog Devices, “AD9361: 2 x 2 RF Agile Transceiver.”
[Online]. Available: http://www.analog.com/en/rfif-components/rfif-
transceivers/ad9361/products/product.html

[12] Google. Protocol Buffers. [Online]. Available:
https://developers.google.com/protocol-buffers/

[13] VITA, “ANSI/VITA 49.0 VITA Radio Transport (VRT) Standard,”
VITA, Tech. Rep., 2015.

